
Version 9.3 of the Icon Programming Language
Ralph E. Griswold, Clinton L. Jeffery, and Gregg M. Townsend

Department of Computer Science
The University of Arizona
Tucson, Arizona

IPD278
November 25, 1996
http://www.cs.arizona.edu/icon/docs/ipd278.html

1. Introduction

The current version of Icon is Version 9.3 and is described in the third edition of the Icon book [1]. This
document supplements the second edition of the Icon book [2], which describes Version 8.0.

Most of the language extensions in Version 9.3 are upward-compatible with previous versions of Icon and
most programs written for earlier versions work properly under Version 9.3. The language additions to
Version 9.3 are:

a preprocessor

graphics facilities for some platforms

new functions and keywords

several other changes and enhancements

There also are several improvements to the implementation. See Section 3.

2. Language Features

2.1 Preprocessing

All Icon source code passes through a preprocessor before translation. The effects of preprocessing can be
seen by running icont or iconc with the -E flag.

Preprocessor directives control the actions of the preprocessor and are not passed to the Icon translator or
compiler. If no preprocessor directives are present, the source code passes through the preprocessor unaltered.

A source line is a preprocessor directive if its first non-whitespace character is a $ and if that $ is not followed
by another punctuation character. The general form of a preprocessor directive is

$ directive arguments # comment

Whitespace separates tokens when needed, and case is significant, as in Icon proper. The entire preprocessor

directive must appear on a single line which cannot be continued. The comment portion is optional. An invalid
preprocessor directive produces an error except when skipped by conditional compilation.

Preprocessor directives can appear anywhere in an Icon source file without regard to procedure, declaration, or
expression boundaries.

Include Directives

An include directive has the form

$include filename

An include directive causes the contents of another file to be interpolated in the source file. The file name must
be quoted if it is not in the form of an Icon identifier. #line comments are inserted before and after the
included file to allow proper identification of errors.

Included files may be nested to arbitrary depth, but a file may not include itself either directly or indirectly. File
names are looked for first in the current directory and then in the directories listed in the environment variable
LPATH. Relative paths are interpreted in the preprocessor's context and not in relation to the including file's
location.

Line Directives

A line directive has the form

$line n [filename]

The line containing the preprocessing directive is considered to be line n of the given file (or the current file, if
unspecified) for diagnostic and other purposes. The line number is a simple unsigned integer. The file name
must be quoted if it is not in the form of an Icon identifier.

Note that the interpretation of n differs from that of the C preprocessor, which interprets it as the number of the
next line. $line is an alternative form of the older, special comment form #line. The preprocessor recognizes
both forms and produces the fully specified older form for the lexical analyzer.

Define Directives

A define directive has the form

$define name text

The define directive defines the text to be substituted for later occurrences of the identifier name in the source
code. text is any sequence of characters except that any string or cset literals must be properly terminated
within the definition. Leading and trailing whitespace are not part of the definition. The text can be empty.

Redefinition of a name is allowed only if the new text is exactly the same as the old text. For example, 3.0 is
not the same as 3.000.

Redefinition of Icon's reserved words and keywords is allowed but not advised.

Definitions remain in effect through the end of the current original source file, crossing include boundaries, but
they do not persist from file to file when multiple names are given on the command line.

If the text of a definition is an expression, it is wise to parenthesize it so that precedence causes no problems
when it is substituted. If the text begins with a left parenthesis, it must be separated from the name by at least
one space. Note that the Icon preprocessor, unlike the C preprocessor, does not provide parameterized

definitions.

Undefine Directives

An undefine directive has the form

$undef name

The current definition of name is removed, allowing its redefinition if desired. It is not an error to undefine a
non-existent name.

Predefined Symbols

At the start of each source file, several symbols are automatically defined to indicate the Icon system
configuration. Each potential predefined symbol corresponds to one of the values produced by the keyword
&features. If a feature is present, the symbol is defined with a value of 1. If a feature is absent, the symbol is
not defined. See Appendix A for a list of predefined symbols.

Predefined symbols have no special status: like other symbols, they can be undefined and redefined.

Substitution

As input is read, each identifier is checked to see if it matches a previous definition. If it does, the value
replaces the identifier in the input stream.

No whitespace is added or deleted when a definition is inserted. The replacement text is scanned for defined
identifiers, possibly causing further substitution, but recognition of the original identifier name is disabled to
prevent infinite recursion.

Occurrences of defined names within comments, literals, or preprocessor directives are not altered.

The preprocessor is ignorant of multi-line literals and can potentially be fooled this way into making a
substitution inside a string constant.

The preprocessor works hard to get line numbers right, but column numbers are likely to be rendered incorrect
by substitutions.

Substitution cannot produce a preprocessor directive. By then it is too late.

Conditional Compilation

Conditional compilation directives have the form

$ifdef name

and

$ifndef name

$ifdef or $ifndef cause subsequent code to be accepted or skipped depending on whether name has been
previously defined. $ifdef succeeds if a definition exists; $ifndef succeeds if a definition does not exist. The
value of the definition does not matter.

A conditional block has this general form:

$ifdef name or $ifndef name

... code to use if test succeeds ...
$else
... code to use if test fails ...
$endif

The $else section is optional. Conditional blocks can be nested provided that all of the $if/$else/$endif
directives for a particular block are in the same source file. This does not prevent the conditional inclusion of
other files via $include as long as any included conditional blocks are similarly self-contained.

Error Directives

An error directive has the form

$error text

An $error directive forces a fatal compilation error displaying the given text. This is typically used with
conditional compilation to indicate an improper set of definitions.

Subtle Points

Because substitution occurs on replacement text but not on preprocessor directives, either of the following
sequences is valid:

$define x 1 $define y x
$define y x $define x 1
write(y) write(y)

It is possible to construct pathological examples of definitions that combine with the input text to form a single
Icon token, as in

$define X e3 $define Y 456e
write(123X) write(Y+3)

2.2 Graphics Facilities

Version 9.3 provides graphics facilities through a combination of high-level support and a repertoire of
functions. Not all platforms support graphics. Consult the current reference manual [3].

2.3 New Functions and Keywords

The new functions and keywords are described briefly here. Appendix B contains more complete descriptions
in the style of the second edition of the Icon book.

There are six new functions:

chdir(s) Changes the current directory to s but
 fails if there is no such directory or
 if the change cannot be made.

delay(i) Delays execution i milliseconds.
 Delaying execution is not supported on
 all platforms; if it is not, there is no
 delay and delay() fails.

function() Generates the names of the Icon (built-
 in) functions.

loadfunc(s1, s2) Dynamically loads a C function. This

 function presently is supported on a few
 UNIX systems. See [4] for details.

serial(X) Produces the serial number of X if it
 is a type that has one.

sortf(X, i) Produces a sorted list of the elements
 of X. The results are similar to those
 of sort(X, i), except that among lists
 and among records, structure values are
 ordered by comparing their ith fields.

There are six new keywords:

&allocated Generates the number of bytes allocated
 since the beginning of program
 execution. The first result is the
 total number of bytes in all regions,
 followed by the number of bytes in the
 static, string, and block regions.

&dump If the value of &dump is nonzero at
 program termination, a dump in the style
 of display() is provided.

&e The base of the natural logarithms,
 2.71828 ...

&phi The golden ratio, 1.61803 ...

&pi The ratio of the circumference of a
 circle to its diameter, 3.14159 ...

&progname The file name of the executing program.
 &progname is a variable and a string
 value can be assigned to it to replace
 its initial value.

The graphics facilities add additional new keywords [3].

Some UNIX platforms now support the keyboard functions getch(), getche(), and kbhit(). Whether or
not these functions are supported can be determined from the values generated by &features. Note: On UNIX
platforms, "keyboard" input comes from standard input, which may not necessarily be the keyboard. Warning:
The keyboard functions under UNIX may not work reliably in all situations and may leave the console in a
strange mode if interrupted at an unfortunate time. These potential problems should be kept in mind when
using these functions.

2.4 Other Language Enhancements

Lists

The functions push() and put() now can be called with multiple arguments to add several values to a list at
one time. For example,

put(L, x1, x2, x3)

appends the values of x1, x2, and x3 to L. In the case of push(), values are prepended in order that they
appear from left to right. Consequently, as a result of

push(L, x1, x2, x3)

the first (leftmost) item on L is the value of x3.

Records

Records can now be sorted by sort() and sortf() to produce sorted lists of the record fields.

A record can now be subscripted by the string name of one of its fields, as in

z["r"]

which is equivalent to

z.r

If the named field does not exist for the record, the subscripting expression fails.

Records can now be used to supply arguments in procedure invocation, as in

p ! R

which invokes p with arguments from the fields of R.

Multiple Subscripts

Multiple subscripts are now allowed in subscripting expressions. For example,

X[i, j, k]

is equivalent to

X[i][j][k]

X can be a string, list, table, or record.

Integers

The sign of an integer is now preserved when it is shifted right with ishift().

The form of approximation for large integers that appear in diagnostic messages now indicates a power of ten,
as in 10^57. The approximation is now accurate to the nearest power of 10.

Named Functions

The function proc(x, i) has been extended so that proc(x, 0) produces the built-in function named x even
if the global identifier having that name has been assigned another value. proc(x, 0) fails if x is not the name
of a function.

String Invocation

String invocation can now be used for assignment operations, as in

":="(x, 3)

which assigns 3 to x.

2.5 Other Changes

The ability to configure Icon so that Icon procedures can be called from a C program has been
eliminated.

Memory monitoring and the functions associated with it no longer are supported.

The dynamic declaration, a synonym for local, is no longer supported.

Real literals that are less than 1 no longer need a leading zero. For example, .5 now is a valid real
literal instead of being the dereferencing operator applied to the integer 5.

A reference to an unknown record field no longer produces an error during linking. Instead a reference
to an unknown field at run-time causes error termination.

The identifiers listed by display() are now given in sorted order.

In sorting structures, records now are first sorted by record name and then by age (serial number).

Some of the values generated by &features have been changed, and some former values
corresponding the features that are present in all implementations of Icon have been deleted. The
corresponding pre-defined constants have been deleted. See Appendix A.

The text of some run-time error messages has been changed and a few new error numbers have been
added. A complete list is available on request.

3. Implementation Changes

Linker Changes

By default, unreferenced globals (including procedures and record constructors) are now omitted from the
code generated by icont. This may substantially reduce the size of icode files, especially when a package of
procedures is linked but not all the procedures are used.

The invocable declaration and the command-line options -f s and -v n are now honored by icont as well as
iconc [5]. The invocable declaration can be used to prevent the removal of specific unreferenced procedures
and record constructors that are invoked by string invocation. The -f s option prevents the removal of all
unreferenced declarations and is equivalent to invocable all.

The command line option -v n to icont controls the verbosity of its output:

-v 0 is the same as icont -s

-v 1 is the default

-v 2 reports the sizes of the icode sections (procedures, strings, and so forth)

-v 3 also lists discarded globals

Note: Programs that use string invocation may malfunction if the default removal of declarations is used. The
safest and easiest approach is to add

invocable all

to such programs.

Other Changes

The tables used by icont now expand automatically. The -S option is no longer needed. As a side
effect of this change, the sizes of procedures are no longer listed during translation.

All implementations of Icon now use fixed-sized storage regions. Multiple regions are allocated if
needed.

Under UNIX, shell headers are now produced instead of bootstrapping code in icode files. This
substantially reduces the size of icode files on some platforms.

Under MS-DOS, iconx now finds icode files at any place on the PATH specification as well as in the
current directory. The MS-DOS translator now is also capable of producing .exe files.

4. Limitations, Bugs, and Problems

Line numbers sometimes are wrong in diagnostic messages related to lines with continued quoted
literals.

Large-integer arithmetic is not supported in i to j and seq(). Large integers cannot be assigned to
integer-valued keywords.

Large-integer literals are constructed at run-time. Consequently, they should not be used in loops
where they would be constructed repeatedly.

Conversion of a large integer to a string is quadratic in the length of the integer. Conversion of a very
large integer to a string may take a very long time and give the appearance of an endless loop.

Integer overflow on exponentiation may not be detected during execution. Such overflow may occur
during type conversion.

In some cases, trace messages may show the return of subscripted values, such as &null[2], that
would be erroneous if they were dereferenced.

If a long file name for an Icon source-language program is truncated by the operating system,
mysterious diagnostic messages may occur during linking.

Stack overflow checking uses a heuristic that is not always effective.

If an expression such as

x := create expr

is used in a loop, and x is not a global variable, unreferenceable co-expressions are generated by each
successive create operation. These co-expressions are not garbage collected. This problem can be
circumvented by making x a global variable or by assigning a value to x before the create operation, as
in

x := &null
x := create expr

Stack overflow in a co-expression may not be detected and may cause mysterious program
malfunction.

References

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Peer-to-Peer Communications,
Inc., San Jose, CA, third edition, 1996.

2. R. E. Griswold and M. T. Griswold, The Icon Programming Language , Prentice-Hall, Inc., Englewood
Cliffs, NJ, second edition, 1990.

3. G. M. Townsend, R. E. Griswold and C. L. Jeffery, Graphics Facilities for the Icon Programming
Language ; Version 9.3, The Univ. of Arizona Icon Project Document IPD280, 1996.

4. R. E. Griswold and G. M. Townsend, Calling C Functions from Version 9 of Icon , The Univ. of Arizona
Icon Project Document IPD240, 1995.

5. R. E. Griswold, Version 9 of the Icon Compiler , The Univ. of Arizona Icon Project Document IPD237,
1995.

Appendix A -- Predefined Symbols

predefined symbol &features value

 _AMIGA Amiga
 _ACORN Acorn Archimedes
 _ATARI Atari ST
 _CMS CMS
 _MACINTOSH Macintosh
 _MSDOS_386 MS-DOS/386
 _MS_WINDOWS_NT Windows NT
 _MSDOS MS-DOS
 _MVS MVS
 _OS2 OS/2
 _PORT PORT
 _UNIX UNIX
 _VMS VMS

 _ASCII ASCII
 _EBCDIC EBCDIC

 _CO_EXPRESSIONS co-expressions
 _DYNAMIC_LOADING dynamic loading
 _EVENT_MONITOR event monitoring
 _EXTERNAL_FUNCTIONS external functions
 _GRAPHICS graphics
 -KEYBOARD_FUNCTIONS keyboard functions
 -LARGE_INTEGERS large integers
 -MULTITASKING multiple programs
 -PIPES pipes
 -RECORD_IO record I/O
 -SYSTEM_FUNCTION system function

 -ARM_FUNCTIONS Archimedes extensions
 _DOS_FUNCTIONS MS-DOS extensions
 _MS_WINDOWS MS Windows
 _PRESENTATION_MGR Presentation Manager
 _X_WINDOW_SYSTEM X Windows
 _WIN32 Win32
 _WIN16 Win16

In addition, the symbol _V9 is defined in Version 9.

Appendix B -- New Functions and Keywords

chdir(s) : n -- change directory

chdir(s) changes the directory to s but fails if there is no such directory or if the change cannot be made.
Whether the change in the directory persists after program termination depends on the operating system on
which the program runs.

Error: 103 s not string

delay(i) : n -- delay execution

delay(i) delays execution i milliseconds. This function is not supported on all platforms; if it is not, there is
no delay and delay() fails.

Error: 101 i not integer

flush(f) : n -- flush buffer

flush(f) flushes the output buffers for f.

Error: 105 f not file

function() : s1, s2, ..., s -- generate function names

function() generates the names of the Icon (built-in) functions.

loadfunc(s1, s2) : p -- load external function

loadfunc(s1, s2) loads the function named s2 from the library file s1. s2 must be a C or compatible
function that provides a particular interface expected by loadfunc(). loadfunc() is not available on all
systems.

proc(x, i) : p -- convert to procedure

proc(x, i) produces a procedure corresponding to the value of x, but fails if x does not correspond to a
procedure. If x is the string name of an operator, i specifies the number of arguments: 1 for unary (prefix), 2
for binary (infix) and 3 for ternary. proc(x, 0) produces the built-in function named x even if the global
identifier having that name has been assigned another value. proc(x, 0) fails if x is not the name of a
function.

Default: i 1

Errors: 101 i not integer
 205 i not 0, 1, 2, or 3

push(L, x1, x2, ..., xn) : L -- push onto list

push(L, x1, x2, ..., xn) pushes x1, x2, ..., onto the left end of L. Values are pushed in order from
left to right, so xn becomes the first (leftmost) value on L. push(L) with no second argument pushes a null
value onto L.

Errors: 108 L not list
 307 inadequate space in block region

See also: get(), pop(), pull(), and put()

put(L, x1, x2, ..., xn) : L -- put onto list

put(L, x1, x2, ..., xn) puts x1, x2, ..., onto the right end of L. Values are pushed in order from left
to right, so xn becomes the last (rightmost) value on L. put(L) with no second argument puts a null value
onto L.

Errors: 108 L not list
 307 inadequate space in block region

See also: get(), pop(), pull(), and push()

serial(x) : s -- produce serial number

serial(x) produces the serial number of x if it is a type that has one but fails otherwise.

sort(X, i) : L -- sort structure

sort(X, i) produces a list containing values from x. If X is a list, record, or set, sort(X, i)
produces the values of X in sorted order. If X is a table, sort(X, i) produces a list obtained by sorting the
elements of X, depending on the value of i. For i = 1 or 2, the list elements are two-element lists of key/value
pairs. For i = 3 or 4, the list elements are alternative keys and values. Sorting is by keys for i odd, by value
for i even.

Default: i 1

Errors: 101 i not integer
 115 X not structure
 205 i not 1, 2, 3, or 4
 307 inadequate space in block storage region

See also: sortf()

sortf(X, i) : L -- sort structure by field

sortf(X, i) produces a sorted list of the values in X. Sorting is primarily by type and in most respects is the
same as with sort(X, i). However, among lists and among records, two structures are ordered by
comparing their ith fields. i can be negative but not zero. Two structures having equal ith fields are ordered
as they would be in regular sorting, but structures lacking an ith field appear before structures having them.

Default: i 1

Errors: 101 i not integer
 126 X not list, record, or set
 205 i = 0
 307 inadequate space in block region

See also: sort()

&allocated : i1, i2, i3, i4 -- cumulative allocation

&allocated generates the total amount of space, in bytes, allocated since the beginning of program execution.
The first value is the total for all regions, followed by the totals for the static, string, and block regions,
respectively. The space allocated in the static region is always given as zero. Note: &allocated gives the
cumulative allocation; &storage gives the current allocation; that is, the amount that has not been freed by
garbage collection.

&dump : i -- termination dump

If the value of &dump is nonzero when program execution terminates, a dump in the style of display() is
provided.

&e : r -- base of natural logarithms

The value of &e is the base of the natural logarithms, 2.71828

&phi : r -- golden ratio

The value of &phi is the golden ratio, 1.61803

&pi : r -- ratio of circumference to diameter of a circle

The value of &pi is the ratio of the circumference of a circle to its diameter, 3.14159

&progname : s -- program name

The value of &progname is the file name of the executing program. A string value can be assigned to
&progname to replace its initial value.

Icon home page

